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Thermodynamics and mechanics of bilayer membranes
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A mean-field lattice model is applied to chain molecules for the study of surfactant systems. As an example,
C12E5 surfactants, modeled as C12O(C2O)5 chains, are forced into cylindrical and spherical shaped vesicles in
a monomer solvent. These aggregates are used to obtain the rigidity constants of the bilayers as a function of
the hydrophilicity of the surfactant’s headgroup from both a thermodynamic and a mechanical route. Within
the numerical accuracy, both routes are fully consistent. The magnitude and sign of the rigidity constants are
interpreted to gain insight into features of the experimentally well-established phase diagram. It is concluded
that the lattice model is a potentially valuable tool to help understand the generic phase behavior of surfactant
systems.

PACS number~s!: 87.16.Dg, 82.65.Dp
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I. INTRODUCTION

In an aqueous environment, surfactants self-assemble
finite-sized aggregates if their concentration exceeds the
called critical micellization concentration. The characteris
length scale of these aggregates, e.g., the radius of sphe
or cylindrical micelles, is comparable to that of the surfact
molecules. The formation dynamics@1# and interfacial ge-
ometry @2# of the aggregates can be related to this comm
length scale. Here we will focus on bilayer membranes
which a double sheet of surfactants separates two aqu
phases. The exterior of the sheet consists of the hydrop
headgroups, whereas the interior is formed by the hydrop
bic tails of the surfactants. The thickness of the membran
comparable to the size of the constituting surfactant m
ecules. Bilayer systems are of interest for industrial appli
tions, e.g., cleaning and catalysis, and in life sciences, e.g
models for biomembranes.

The headgroups of the surfactants are hydrated on the
hand but also overlap to some extent with the conformati
ally disordered tails. Consequently, the conformational fl
tuations within the various parts of the surfactant molecu
are correlated. If the headgroups are well-hydrated,
swollen, their relatively large headgroup area allows fo
disorder of the tail region. Conversely, a collapsed he
group induces more conformational order in the tails.

Bilayer membranes are also subject to collective, wa
like, thermal motions of the constituting surfactant mo
ecules. These so-called undulations give rise to a confor
tional disorder on the level of the membrane. When t
bilayers approach each other, the undulations are confi
which gives a loss of conformational entropy. This loss lea
to a repulsive steric interaction between the bilayers. A l
rigidity allows for large shape fluctuations of a membra
and yields a strong steric repulsion. This suggests that
contribution to the Helmholtz energy per unit area owing
undulations,f u , is inversely proportional to the bending r
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gidity of the bilayer membrane. Introducing the bendi
moduluskc , which is an energy typically of the orderkBT
@3,4#, dimensional analysis gives

f u}S kBT

kc
D a kBT

r 2
. ~1!

Herea is a numerical constant andr is the distance betwee
two adjacent membranes. Indeed, Helfrich@5# showed that
a51 and has been confirmed by others@1,4#. However, the
proportionality constant is still disputed@6#. Depending on
the magnitude ofkc , and the prefactor in Eq.~1!, the repul-
sive undulation energy, Eq.~1!, may overcome the attractiv
van der Waals energyf vdW}2A/r 2, whereA is the Hamaker
constant@1#. In those cases, the stability of bilayer mem
branes largely depends on the bending rigidity. Hence, i
of interest to determinekc for these types of surfactant sys
tems.

Another parameter of interest for the phase behavior
the surfactant layer is the saddle-splay modulusk̄. If k̄ is
positive, the free energy of the interface can be lowered
forming saddle planes which have negative Gaussian cu
turesK. It follows from the Gauss-Bonnet theorem@4,7#

E KdA54p~12g!

that g handles can be formed on a closed interface. For
stance,g50 for a spherical interface (K51/R2). Conse-
quently, a positive saddle-splay modulus favors the form
tion of handles. Hence,k̄ determines the topology o
surfactant layers.

The phase behavior of surfactants can thus be unders
in terms of the rigidity constants@8#. In order to study these
constantskc andk̄ of a bilayer membrane, the free energy
the interface has to be considered as a function of curvat
This can best be done by considering closed bilayers or
called vesicles. Vesicles are of interest for many biologi
purposes and are used as, e.g., drug delivery vehi
@1–3,7#. In the case of vesicles, there are no end-cap con
butions to the free energy of the bilayer@2#. This also allows

x
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the application of a lattice model where spherically and
lindrically shaped structures can be studied.

In the present paper, we will consider the phase beha
of the nonionic surfactant dodecyl penta~ethylene oxide!, or
briefly C12E5. This nonionic surfactant can form vesicles a
is widely used as an emulsifying agent and detergent. It
hibits the same characteristic features as more complex,
ticomponent surfactant systems@9#. Consequently, much ex
perimental data are available for this system@9,10#. First we
will derive in Sec. II how the rigidity constants can be d
duced consistently from both a thermodynamic and mech
cal analysis. In order to study surfactants, a lattice mode
briefly considered in Sec. III. Subsequently, in Sec. IV t
rigidity constants of C12E5 vesicles will be investigated as
function of the hydrophilicity of the headgroup. From th
obtained values, possible implications for the phase beha
will be discussed in Sec. V. Finally, recommendations
further study are given.

II. THERMODYNAMICS AND MECHANICS OF CURVED
INTERFACES

In spite of the fact that we will focus in this paper o
bilayer membranes in a single-component solvent, we
treat interfaces more generally, such that we need not go
detail about the structure of the interface. It will turn out th
this generalized treatment, which originates from the ea
work of Gibbs@11# and Tolman@12,13#, is easily applied to
surfactant bilayers. Consider a two-phase system consis
of the bulk phasesa and b. The interface between bot
phases is generally not sharp due to the thermal motio
the molecules. Consequently, there is no unambiguous p
tion of the interface. Following Gibbs@11#, the system is
split up into two bulk phases separated by an infinitely t
interface at an arbitrary positionRs . The bulk values of the
state variables are extrapolated up to the interface and
excesses are attributed to this arbitrary position@14#. Since
we are interested in the mechanical work on a system,
grand potential is the appropriate state variable to study.
a two-phase system, the grand potential has proven to be@15#

V5Va1Vb1Vs52paVa2pbVb1gA, ~2!

wherepb is the isotropic bulk pressure andVb is the volume
of the respective bulk phasesb5a,b. The curvature-
dependent interfacial tensiong acts on the interfacial areaA
at the dividing plane located inRs .

Mechanically, it is argued that the tangential pressure p
file, pT(rW), amounts to the grand potential@16#

V52E pT~rW !drW. ~3!

Upon comparison of the thermodynamic expression, Eq.~2!,
and the mechanical expression, Eq.~3!, for the total grand
potential, it is found that the excess pressure profile con
tutes the grand potential of the interface,

gA5E
Va

@pa2pT~rW !#drW1E
Vb

@pb2pT~rW !#drW. ~4!
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This relation holds for all geometries of the interface.
order to describe curved interfaces, we will use the so-ca
total curvatureJ[1/R111/R2 and Gaussian curvatureK
[1/R1R2, whereR1 andR2 are the local radii of curvature
of the interface atRs . From the principle of parallel inter-
faces@17,18#, the infinitesimal volume can be written asdrW
5A(R)dR, where the interfacial areaA(R) at any positionR
can be given analytically relative to the interfacial areaA at
Rs @19#: A(R)5A$11(R2Rs)J1(R2Rs)

2K%. Substitution
of this into Eq.~4! and dividing byA gives

g5P01P1J1P2K, ~5!

where we introduced the zeroth, first, and second bend
moments,

P0[E $pab2pT~r !%dR, ~6a!

P1[E ~R2Rs!$pab2pT~r !%dR, ~6b!

P2[E ~R2Rs!
2$pab2pT~r !%dR, ~6c!

where, in turn, the step functionpab[pau(Rs2r )1pbu(r
2Rs) has been introduced, using the Heaviside step func
u(r ). Note that the moments of the excess pressure pro
P0 , P1, andP2 depend on the arbitrary position of the inte
face, sincepab generally depends onRs .

We next consider the interfacial work needed to bend
interface. To that end, we use the well-known generaliz
Gibbs adsorption equation@15#,

dg52
Ss

A
dT2GW •dmW 1C1dJ1C2dK, ~7!

whereSs is the interfacial entropy,T the temperature,GW the
adsorbed amount, andmW the set of chemical potentials. Th
coefficientsC1 and C2 conjugated to the curvature are th
so-called bending stress and torsion stress, respectively@17#.
Integration of Eq.~7! from the planar interface to an inter
face with a certain curvature (J, K) at constant temperatur
and chemical potentials yields for small deviations from t
planar interface up to second order in the curvature

g~J,K !'g01C1
0J1

1

2 S ]C1

]J D 0

J21C2
0K, ~8!

where the superscript 0 denotes evaluation at the plana
terface. Helfrich gave a similar expression for a phenome
logical description of the undulation of lipid bilayers@20#,

g~J,K !5g02kcJ0J1 1
2 kcJ

21 k̄K, ~9!

whereJ0 is the spontaneous curvature. As argued in Sec
the saddle-splay modulesk̄ determines the topology of th
interface rather than its rigidity, which is in turn determine
by the bending moduluskc . Comparison of Eq.~8! with the
Helfrich equation, Eq.~9!, yields the following thermody-
namic expressions for the rigidity constants:
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2kcJ05C1
05S ]g

]J D
T,mW ,K

0

, ~10a!

kc5S ]C1

]J D 0

5S ]2g

]J2 D
T,mW ,K

0

, ~10b!

k̄5C2
05S ]g

]K D
T,mW ,J

0

, ~10c!

where we have used the well-known total differential Eq.~7!
for the definitions of the bending and torsion stress. From
mechanical expression forg, Eq. ~5!, we then find the fol-
lowing expressions for the rigidity constants in terms of t
excess pressure profile:

2kcJ05P1
01S ]P0

]J D
T,K

0

, ~11a!

kc52S ]P1

]J D
T,K

0

1S ]2P0

]J2 D
T,K

0

, ~11b!

k̄5P2
01S ]P0

]K D
T,J

0

. ~11c!

At first sight, all second terms on the right-hand sides
Eq. ~11! are extra compared to the expressions given in
literature @3,21–24#; 2kcJ05P1

0, kc5(]P1 /]J)0,0, and k̄
5P2

0. Moreover, in the first term on the right-hand side
Eq. ~11b!, a factor 2 comes in compared to the literature. T
extra terms make the thermodynamic variables indepen
of the choice of the expression for the local pressure@25#.
Moreover, these terms require that one has to do real ben
work; according to Eq.~11!, evaluation of the planar inter
face only is no longer sufficient when the pressure is th
modynamically defined from Eq.~3!.

Safran @3,21# derived mechanical expressions for t
bending and saddle-splay moduli from virtual work. He a
signed all the work to the pressure tensor, therefore
chemical potentials are embodied in the pressure, whic
not consistent with the aforementioned thermodynamic d
nition that led to Eq.~11!. Something similar occurs in th
work of Szleiferet al. @26#, where the pressure is strictly
Lagrange multiplier to satisfy packing constraints, which
not obviously the local pressure. Inserting this constraint i
the partition function indeed adds a generalizedpV term
@22#, also accounting for the chemical potentials. It has b
shown indeed that the change in the chemical potentials m
be accounted for in their expressions@27#. However, far
above the critical micellization concentration, this change
negligible and for lower concentrations this can be correc
for by a normalization factor@21#. Gompperet al. @23# define
a Ginzburg-Landau free-energy density as the excess p
sure profile. It can be shown that in the vicinity of a critic
point, the mechanical expressions from such a free-ene
density numerically yield the same rigidity constants as
~11! for simple liquid-vapor interfaces@28#. We conclude
that distinction in the definitions for the local pressure e
plains the differences between Eq.~11! with those given in
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the literature. Somehow, the ‘‘extra’’ terms of Eq.~11! are
incorporated in the previously mentioned pressures in
first terms for definitions of the local pressure other th
from Eq. ~3!. Consequently, simply copying the expressio
from the literature, as has been done in previous studies@29#,
may lead to incorrect results if the pressure has a differ
origin.

As may be clear from the above, it is necessary to app
model in order to evaluate either of the equations~10! and
~11!. In the remainder of this paper, we will use a mean-fie
lattice model in which all conformations of chain molecul
are accounted for. By constraining the molecules to the
ometry of the lattice, we impose a curvature to the surfact
assemblies.

III. A LATTICE MODEL FOR SURFACTANT SOLUTIONS

We will apply a mean-field lattice model@30# to model
the surfactant bilayer system, as elaborated bef
@29,31,32#. Here we will briefly summarize the relevant fea
tures of this generalized Flory-Huggins model. In order
have an easily accessible partition function, space is divi
into cells with an equal volume of molecular size. The th
formed lattice consists ofz51, . . . ,M different layers, each
containingL(z) indistinguishable sites. In order to have a
sites of equal volumev0, the number of sites per layer de
pends on the geometry and the layer indexz. That is,L(z)
}zd, whered is the dimensionality of the lattice (d50 is a
planar,d51 a cylindrical, andd52 a spherical lattice! @33#.
The fractions of adjacent sites in each layerz, the so-called
transition probabilities, are given by the parametersl. The
fractionl0(z) is the probability of finding an adjacent site i
the same layerz, whereasl21(z) and l1(z) are the prob-
abilities of finding adjacent sites in the previous and n
layer, respectively. These are defined such that a deta
balance is satisfied. That is, the probability of finding
adjacent site in the next layer,l1(z)L(z), is equal to the
probability of finding an adjacent site in the previous lay
relative to the next layer,l21(z11)L(z11) @33#.

Before we can write down the grand potential, we fi
introduce the so-called contact fraction,

^f~z!&[l21~z!f~z21!1l0~z!f~z!1l1~z!f~z11!,
~12!

wheref(z) is the volume fraction of a species in layerz.
From series expansion off(z21) andf(z11), this may be
approximated in continuous space aŝf(z)&'f(z)
1l1@(]2f/]z2)1(d/2)(]f/]z)#, whered is again the di-
mensionality of the lattice andl15 limz→`l1(z).

Using the above contact fraction, the energy a segmen
type A encounters at layerz is, relative to the bulk phaseb,
given by @32#

uA~z!5u8~z!1kBT(
B

xAB@^fB~z!&2fB
b#. ~13!

HerefB is the volume fraction of all other segment typesB.
The energyu8(z) comes in to account for the constraint th
the lattice must be completely filled. The interactions b
tween the segment typesA and B are accounted for by the
well-known Flory-Huggins interactions parameterxAB .
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The volume fraction profiles of the various segments f
low trivially from the corresponding volume fraction profile
of the molecules. The latter are found by generating all p
sible and allowed conformations of each molecule and
weighted by the appropriate Boltzmann factor. In this fact
the potential energy for a chain in a given conformation o
depends on the potentialsuA(z) experienced by the indi
vidual segments along the chain. In generating chain con
mations, we have used a first-order Markov approximati
That is, chain connectivity is guaranteed but correlatio
along the chain between preceding and subsequent segm
are ignored. Within this approximation, an efficient mat
procedure is available to generate the segment densities@30#.

Hence, the volume fractions of the segments of typeA
follow from the energiesuA(z) @30,32#. As can be seen from
Eq. ~13!, the energiesuA(z) depend, in turn, on the volum
fractions. Consequently, the set of equations has to be so
iteratively until the energies and volume fraction are cons
tent.

The grand potential relative to its bulk value can be d
rived in terms of the volume fraction profiles from statistic
thermodynamics@29,32#,

V1pbV

kBT
5(

z
L~z!H(

i

f i
b2f i~z!

Ni

2(
A

fA~z!uA~z!

kBT
1

1

2 (
A

(
B

xAB$fA~z!

3@^fB~z!&2fB
b#2fA

b@fB~z!2fB
b#%J

5(
z

L~z!$pb2pT~z!%. ~14!

This defines the excess pressure profile,pb2pT(z), in terms
of the volume fractions. The factor12 of the third term in
large curly brackets enters to correct for double-counting
interactions while summing over all speciesA and B. This
means that the interactions between speciesA andB are ef-
fectively locally averaged over both species. However, o
can also perform the double sum12 (A(B as(A(B.A , using
the property that(zfA(z)^fB(z)&5(zfB(z)^fA(z)&. In
this way, the interactions are assigned to only one of
species. Although both ways of counting the interactio
yield the same grand potential, the excess pressure pr
pb2pT(z) is locally different. Still other schemes to calcu
late the double sum can be thought of, each yielding
same grand potential but different excess pressure profi
Consequently, the local pressure is ambiguous, althoug
yields an unequivocal value for the grand potential@25#.

IV. BENDING A BILAYER

A. Thermodynamics of bilayer membranes

As outlined in Sec. I, the rigidity of a bilayer determine
the phase behavior of bilayer membranes to some ex
The rigidity constants can be derived from the curvature
pendence of the interfacial tension, as expressed in the
frich equation, Eq.~9! @20#. Thermodynamically, the interfa
cial tension follows from@cf. Eq. ~2!#
-

s-
re
,
y

r-
.
s
nts

ed
-

-
l

e

e

e
s
le

e
s.
it

nt.
-

el-

V1pbV52DpVa1gA, ~15!

where A is the area of the bilayer andVa the volume en-
closed by the membrane. Since the inner bulk phasea, en-
closed by the bilayer, is identical to the continuous ou
phaseb, there is no Laplace pressure drop, i.e.,Dp50. An
equilibrium system of membranes that forms spontaneou
from the surfactant solution can adapt its own number
bilayers with the corresponding interfacial areaA. It follows
from the thermodynamics of small systems@34–37# that for
an equilibrium bilayer membrane, neglecting the trans
tional entropy of the membrane, the equilibrium bilayer
tensionless, i.e.,g50 @29#. Moreover, it is easily seen from
symmetry considerations that the equilibrium membrane
on average a planar geometry@38#, i.e., J050. Hence, the
Helfrich equation~9! for bilayer membranes reduces to

V1pbV

A
5g5 1

2 kcJ
21 k̄K. ~16!

B. Mechanics of bilayer membranes

It has been shown in Sec. II that the rigidity constants c
also be obtained mechanically, i.e., in terms of the~excess!
pressure profile. The bending moduluskc and spontaneous
curvatureJ0 can be found directly from the cylindrical bi
layer. The saddle-splay modulusk̄ can only be determined
from comparison of the bending modulus and the effect
modulus of the spherical vesicle@cf. Eq. ~11!#,

2kcJ05P1
c,01S ]P0

c

]J D
T

0

, ~17a!

kc52S ]P1
c

]J D
T

0

1S ]2P0
c

]J2 D
T

0

, ~17b!

kc1 1
2 k̄52S ]P1

s

]J D
T

0

1S ]2P0
s

]J2 D
T

0

1 1
2 P2

s,0 , ~17c!

where the superscripts ‘‘c’’ and ‘‘ s’’ refer to evaluation at
the cylindrical and spherical interface, respectively. T
bending moments, Eq.~6!, for the lattice model are@28#

P05(
z51

M

$pb2pT~z!%, ~18a!

P15(
z51

M

~z2Rs2
1
2 !$pb2pT~z!%, ~18b!

P25(
z51

M

@~z2Rs!
22~z2Rs2

1
3 !#$pb2pT~z!%. ~18c!

The excess pressure profilepb2pT(z) is given by Eq.~14!.
Moreover, because there is no Laplace pressure differe
we used thatpab5pb for bilayer membranes.
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FIG. 1. ~a! Volume fraction profiles of a cylindrical C12E5 vesicle in water. The surfactant C12E5 is modeled as C12O(C2O)5, where the
C represents CH2 or CH3 groups and the O mimics the O or OH groups. Water has been treated as a monomer with orientation-inde
interactions. A lattice of 40 layers has been used withl051/3, xCW5xCO51.6, andxOW520.5. The dividing plane atRs is chosen to be
in the middle of the bilayer, whereas the center of the vesicle is located atz50. ~b! The tangential excess pressure profile correspondin
the density profiles as given in~a! can be determined in various ways yielding the same grand potential. The excess pressure repres
the solid line~left vertical axis! effectively averages the interactions with units in adjacent layers, whereas the dashed line~right vertical axis!
one gives the excess pressure where the interactions with units in adjacent layers are assigned to one of the layers. Note that the
by one order of magnitude.
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C. Results for C12E5 in water

Using the lattice model, the C12E5 surfactants will be
modeled as the chain molecule C12O(C2O)5. Here, C stand
for CH2 or CH3 groups, which will not be discriminated, an
O mimics the oxygen or hydroxyl groups in the surfacta
The water molecules will be modeled by a simple monom
solventW. Obviously, this is a poor model for water but ca
be improved by accounting for the orientation-dependent
teractions in a quasichemical model@39#. Given the three
monomer typesC, O, and W, three exchange paramete
xCO , xCW , andxOW need to be specified. Indicating that th
interactions with theC group are hydrophobic, the exchang
parameters are positive and are taken to be constant@31,40–
42#, xCO5xCW51.6. However, owing to the hydration o
the hydrophilicO groups by the water molecules,xOW is
more strongly temperature-dependent. Consequently, v
ing xOW may be regarded as changing the temperat
Moreover, an fcc lattice type will be used, i.e.,l05l15 1

3 .
This lattice type in conjunction with the relatively low ex
change parametersx suppresses the so-called lattice artifa
@29,43#. This artifact is originated in the fact that owing t
the discretization of space, the fixed number of molecules
forced to take place in one layer or the other, i.e., they
‘‘squeezed’’ onto the lattice. Consequently, an extra field
introduced as a result of the presence of the lattice, wh
causes a perturbation of the equilibrium state.

In order to determine the interfacial tension from t
bending moments, Eq.~18! @cf. Eq. ~5!#, the position of the
dividing planeRs remains to be defined. Although both th
inner and outer radius of the bilayer are possible choices,
dividing plane is found here from

(
z51

M

~z2Rs!$fs~z!2fs
b%50, ~19!

wherefs5fC1fO is the total surfactant volume fraction
The volume fraction profilesfC(z), fO(z), andfW(z) are
illustrated in Fig. 1~a! for a cylindrical vesicle, wherexOW
520.5 and the center of the vesicle is located atz50 Using
.
r

-

y-
e.

t

re
e
s
h

he

Eq. ~19!, the dividing plane is located to a good approxim
tion in the middle of the membrane. The contributions to t
C groups come from both the headgroups and the tails
are distributed over the complete bilayer. However, theO
segments of the headgroups prefer the exterior of the ves
but are relatively diffusively distributed because they a
bound to the hydrophobicC groups. Note that the curve
bilayer is asymmetric; theO groups are slightly more
densely packed inside the vesicle (z,Rs) than the groups on
the outside. This forces the tails outwards, hence the m
mum of theC groups is found forz.Rs . Note the relatively
large penetration of the monomeric water in the center of
membrane due to the lack of specific interactions. As sta
before, this can be improved@39# but does not change th
qualitative behavior of the present analysis.

Given the volume fractions, the excess pressure pro
can be determined from Eq.~14!. As stated, several ways t
perform the double sum counting the nearest-neighbor in
actions can be considered. Note the different features of
two examples given in Fig. 1~b!. For instance, the range o
the two given pressures differs by one order of magnitu
and the one given by the solid line has three maxima whe
the one given by the dashed line has only one. Neverthe
both excess pressure profiles are slightly more tensile,
negative, inside the vesicle than outside due to the curvat
The tensile parts are needed to compensate for the com
sive, i.e., positive, parts resulting in the typical small inte
facial tension.

With the above set of parameters and Eqs.~14! and~16!,
the rigidity constants can be determined from the curvat
dependence of the interfacial tension as a function of
hydrophilicity xOW of the headgroup. The curvature of
bilayer is varied by changing the number of surfactants in
system. Given the number of surfactants,ni , the constrained
equilibrium density profiles are found. The equilibrium
constrained since the bilayer is forced into a curved, rat
than a planar, geometry, which was shown to be the glo
equilibrium geometry. The resulting interfacial tensions a
displayed by the symbols in Fig. 2~a! for both a spherical and
cylindrical geometry as a function of the curvature taki
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FIG. 2. ~a! The interfacial tension of C12E5 bilayer membranes in water as a function of the curvature, withl051/3, xCW5xCO

51.6, andxOW520.5. The position of the dividing plane is given by Eq.~19!. The squares apply to a spherical vesicle, whereas the cir
give the calculated values for a cylindrical geometry. The solid lines are a second-order polynomial fit to the points.~b! The linearized
interfacial tension as given by Eq.~20! as a function of the curvature. The solid lines are linear fits to the calculated points. The ma
cations show that the calculated values are subject to a relatively small lattice artifact.
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xOW520.5. A direct fit to the interfacial tension with
second-order polynomial, shown by the solid lines, yie
according to Eq.~16! the rigidity constants. However, ac
cording to Eq.~16!, the rigidity constants can also be foun
from a linear fit to

V1pbV

JA
5

g

J
5H 1

2
kc

1

Rs
~cylinders!

S kc1
1

2
k̄D 1

Rs
~spheres!.

~20!

The fit to Eq.~20! is shown in Fig. 2~b! for the same data
Using both the fit tog and (V1pbV)/JA gives information
about the accuracy of the fits. Deviations may occur for t
reasons. First, the calculated interfacial tensions are sub
to lattice artifacts, as mentioned above. As can be seen f
the magnifications in Fig. 2, the deviations from the fits a
relatively small as expected for the given set of paramet
Second, the Helfrich equation is strictly only valid for sma
curvatures, i.e.,J→0. However, as can most easily be se
from Fig. 2~b!, the description remains appropriate for re
tively large curvatures. Consequently, the curvature ene
s

o
ct
m

e
s.

-
y,

(]2g/]J2)T , is hardly dependent on the curvature. This e
plains why vesicles, although not the equilibrium structure
the bilayer membranes, are relatively stable; the system
hardly change its free energy by growing or shrinking t
vesicles. The system can only lower its free energy by fus
vesicles, which is an activated process. The average rigi
constants derived from Fig. 2 readkc51.64560.002 andk̄
522.23660.002. Apparently, the errors are relative
small. Since they are of a totally different origin, it is n
likely that the two different types of errors cancel each oth

The rigidity constants can also be determined mecha
cally, as given by Eq.~17!. The derivatives in Eq.~17! are
subsequently determined from a second-order polynom
and linear fit to the zeroth and first bending moment, resp
tively. Although the results are independent of the choice
the pressure profile, one may prefer a certain choice for
vorable numerical accuracy. As can be seen from Fig. 3,
xOW520.5 these fits are fairly accurate and are hardly s
ject to lattice artifacts. Moreover, extrapolation to the plan
interface (1/Rs→0) shows thatP0

s,05P0
c,050, which recov-

ers the fact that the planar interface is tensionless if the tra
lational entropy is neglected, as is the case in this stu
the
e graph
e

FIG. 3. ~a! The zeroth bending moment of C12E5 bilayer membranes in water as a function of the curvature, withl051/3, xCW

5xCO51.6, andxOW520.5. The position of the dividing plane is given by Eq.~19!. The squares refer to a spherical vesicle, whereas
circles give the calculated values for a cylindrical geometry. The solid lines are a second-order polynomial fit to the points. Th
recovers the analytical result that the planar membrane is tensionless;g05P0

050. ~b! The first bending moment as a function of th
curvature. The solid lines are linear fits to the calculated points. As expected from symmetry considerations,P1

050. The magnifications show
that the calculated values are subject to a relatively small lattice artifact.
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Since the planar bilayer is completely symmetrical with
spect to its center@cf. Eq. ~19!#, extrapolation indeed yields
P1

s,05P1
c,050. Furthermore, it is found that for the system

shown in Fig. 3,P2
s,05P2

c,05221.536.
From the fits to the bending moments in Fig. 3, using E

~17!, it is found thatJ050.00,kc51.61, andk̄522.11. The
exact error in these values is unknown; the accuracy of
fits is hard to determine and the sum of the respective
rivatives typically yields a number that is one order of ma
nitude smaller than the individual values. Otherwise sta
the discrepancies between the values for the rigidity c
stants determined from the direct fit to the interfacial tens
and those determined from the bending moments are du
numerical errors.

The above procedure has been repeated for several v
of xOW . The results for the bending modulus and sadd
splay modulus are shown in Fig. 4. The solid lines conn
the symbols calculated from the direct fits to the interfac
tension. The error bars are smaller than the symbols.
dotted lines connect the symbols determined mechanic
from the bending moments. There appears to be a cons
minor deviation between the mechanically determined rig
ity constants and those determined from the fit tog. This is
due to the fact that the error in the fits to the bending m
ments is systematic. This apparently leads to the conclu
that the value for the mechanically determined bend
modulus is typically too low. Consequently, since the s
must yield by definition the same interfacial tensions as th
from the direct fit tog, the saddle-splay modulus from th
bending moments is slightly overestimated.

V. DISCUSSION AND CONCLUSIONS

Rigidity constants have been determined consiste
from both a thermodynamic and mechanical route as a fu
tion of the hydrophilicity of the headgroup, which is close
related to the system’s temperature. Different regions ma
distinguished in Fig. 4. ForxOW&20.8, the value ofkc is
almost constant and relatively high. Owing to the relative
good solubility of the O groups, the headgroups are w
hydrated. Consequently, the hydrophobic tails of the sur
tants are forced more inwards into the bilayer, as outlined
Sec. I. As a result, the membrane remains relatively rigid

FIG. 4. The bending modulus and saddle-splay modulus fo
C12E5 bilayer membrane as a function of the hydrophilicity of t
headgroup withxCO5xCW51.6, l05

1
3 . The dividing plane is cho-

sen to be in the middle of the membrane, using Eq.~19!. The roman
numbers indicate different phase regions.
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Going through the range20.8&xOW<20.22, the hydro-
philicity decreases such that the headgroups can diss
easier in the hydrophobic core of the membrane, making
membrane less rigid. Consequently, the values of the be
ing modulus decrease. Hence, the undulations increase
increasingxOW . As can be seen from Eq.~1!, the repulsive
forces in the system increase, which makes the spacinr
between bilayer sheets larger. This correlates well with
experimental finding that the so-calledLa phase swells with
increasingT @9,10#.

For 20.22,xOW,20.12, the saddle-splay modulus b
comes positive, which favors the formation of saddle plan
Consequently, although the low value of the bending mo
lus gives rise to a large repulsive force between the me
brane sheets, connecting handles are formed between th
layers. This may explain the experimentally observedL3 or
sponge phase at relatively high temperature@9#.

If xOW>20.12, the bending modulus tends to becom
negative and, like the saddle-splay modulus, even seem
diverge. This implies that the bilayer membranes are
longer stable. Moreover, the solubility of the headgroup h
become so low that the system will phase-separate into
aqueous and a surfactant-rich phase. Since theO and C
groups still repel each other, the surfactant molecules ten
form inverted micelles in which small amounts of water a
dissolved. Such phases have indeed been observed ex
mentally at high temperatures@9#.

The described phase behavior is summarized and il
trated schematically in Fig. 5 for the regions indicated in F
4. Since all these phases have been observed experimen
for the C12E5 surfactant system in water@9,10#, it is con-
cluded that the lattice model is suitable for a qualitati
study of the phase behavior of surfactant systems. Alre
with a restricted set of parameters, the basic experime
features of the phase diagram can be recovered. In orde
do so, vesicles were forced into a cylindrical and spheri
geometry, thus neglecting the end-cap energy and transla
entropy of the actual bilayer membranes. From the
vesicles, two independent fits to the interfacial tension yi
consistent values for the rigidity constants of the surfact
bilayer membrane as a function of the hydrophilicity of t

a

FIG. 5. Different phases can be observed from the calculati
for C12E5 vesicles. I: ForxOW&20.8, the C12E5 membranes are
relatively rigid. II: For20.8&xOW<20.22, kc decreases, causin
the bilayer to be less stiff, and yields an increasing spacing betw

the membranes. III: For20.22,xOW,20.12, k̄ becomes positive,
which favors the formation of connecting handles between the
layers. IV: If xOW>20.12, the headgroups are not hydrophi
enough, such that the bilayers are unstable and the surfactants
separates into a phase of inverted micelles.
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headgroup. The values are recovered with less numerica
curacy from the mechanical expressions for the rigidity c
stants. Consequently, a direct fit to the interfacial tens
suffices for future studies. It should be noted that the te
that appear extra in the mechanical expressions, Eq.~11!, as
compared to those in the literature due to the definition of
pressure, are required to amount to the same Helfrich c
stants for any choice of the pressure profile@cf. Fig. 1~b!#.
Hence, these terms, which arise naturally in the analysis,
needed to guarantee consistency between the thermodyn
and mechanical route.

From the sign and magnitude of the bending and sad
splay modulus, one can determine in what phase the su
tant layer prefers to be when the geometry restrictions
relaxed. Hence, minimal surfaces may be studied from cy
drical and spherical interfaces only. Nevertheless, the
ance between attractive and repulsive forces accounting
the translational entropy of the bilayers upon actual inclus
of multiple membrane sheets in the calculations remains
interest. Incorporation of the influence of charges in io
surfactant systems@44,45# and the role of, e.g., a cosurfacta
or cosolvent on the phase behavior of surfactant layers is
a challenge for future study. Moreover, the phase behavio
surfactant monolayers, such as e.g., in microemulsions@46#,
as a function of the aforementioned parameters deserves
found attention.

It has been argued that the bending route to the rigid
constants, as elaborated on here, may lead to different r
ity constants and, by that, different phase behavior as c
pared to the fluctuation route@47#. This may be due to the
fact that the undulations on the closed interface of the ves
are subject to boundary conditions, which makes the num
re
gy

,

c-
-
n
s

e
n-

re
mic

e-
c-

re
-
l-
or
n
of
c

so
of

ro-

y
id-

-

le
er

of waves quantized~cf. the ‘‘particle in a box’’ from quan-
tum mechanics!. This restriction introduces another entrop
term that is not accounted for in the above route to the rig
ity constants@48,49#. It is also of interest to study the influ
ence of this kind of entropy on the differences in rigidi
constants.

In the model for surfactant bilayers presented here, c
tributions of a lattice artifact have been shown to be ne
gible. However, in the previously recommended system
this artifact may need attention. In the case of microem
sions, the amount of oil may be adjusted until the spurio
Laplace pressure difference due to the artifact is elimina
Since the enclosed phase equals the outer phase, this m
is not applicable to vesicle systems. In a previous study@29#,
the number of surfactants of a vesicle system was adju
until P050. As can be seen from Eq.~17!, this implies that
k̄5P2

0, as had been found indeed. However, the condit
g5P050 only holds for the planar equilibrium membran
This method thus appeared to eliminate the artifact by in
ducing one. Consequently, at present there is no long
condition available to warrant artifact-free vesicles with
the presented mean-field lattice model. Since the sign and
order of magnitude rather than the exact value of the rigid
constants determines the phase behavior, the lattice m
may still prove to be a very valuable tool for the study
surfactant systems.
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